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Abstract

We demonstrate the regression analysis of exposure determinants using cross-classified random 

effects in the context of lead exposures resulting from blasting surfaces in advance of painting. We 

had three specific objectives for analysis of the lead data, and observed: 1) high within-worker 

variability in personal lead exposures, explaining 79% of variability, 2) that the lead concentration 

outside of half-mask respirators was 2.4-fold higher than inside supplied-air blasting helmets, 

suggesting that the exposure reduction by blasting helmets may be lower than expected by the 

Assigned Protection Factor, and 3) that lead concentrations at fixed area locations in containment 

were not associated with personal lead exposures. In addition, we found that, on average, lead 

exposures among workers performing blasting and other activities was 40% lower than among 

workers performing only blasting. In the process of obtaining these analyses objectives, we 

determined that the data were non-hierarchical: Repeated exposure measurements were collected 

for a worker while the worker was a member of several groups, or cross-classified among groups. 

Since the worker is a member of multiple groups, the exposure data do not adhere to the 

traditionally assumed hierarchical structure. Forcing a hierarchical structure on these data led to 

similar within-group and between-group variability, but of precision in the estimate of effect of 

work activity on lead exposure. We hope hygienists and exposure assessors will consider non-

hierarchical models in the design and analysis of exposure assessments.
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INTRODUCTION

The inhalation and dermal occupational exposures of a worker varies from day to day, and 

systematically among workers. (1,2) Estimating within-worker variability requires repeated 

exposure measurements for workers, while between-worker variability requires exposure 

measurements on more than one worker. As reviewed by Burdorf and van Tongeren, (3) the 

concept of within- and between-worker exposure variability has been extensively used to 

evaluate classification of workers into similar exposure groups, within which workers have 

small between-worker variability (and similar exposure groups are distinguished by large 
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between-group variability). This application involves a hierarchical structure, in which each 

worker is a member of one group (i.e. workers are nested in groups) and exposure and risk 

patterns for a group are assumed to apply more to members of a given group than to 

members of another group. The models also assume that exposure distributions are time-

invariant, though this can be addressed by modeling time trend.(4)

The concept of similar exposure groups imposes a hierarchy, but this hierarchy may not be 

observed in all occupational exposure assessments. When exposure is measured repeatedly 

for a worker who changes groups from day-to-day the nesting assumption in the hierarchical 

model is violated. An example is the promotion of a worker to a supervisory role (presumed 

low exposure) from frontline work (presumed high exposure) within the same work area. 

Another example may arise when, one classifies construction painters as working in 

enclosed versus open spaces but a specific individual paints the machine room of ship on 

one day and its exterior on another. (5) That is, a worker may belong to more than one group. 

Workers who participate in more than one group may be unique, and ignoring their 

participation in multiple groups may result in incorrect representation of group differences. 

Clearly the definition of a group is not universal, but is driven by the analysis objective.

More formally, a cross-classified scenario is described as follows. Consider a worker of 

whom four 8-hour TWA exposure assessments were collected. On day d1, d2, and d4 the 

exposure measure was collected while the worker was in Group 1. On day d3, the exposure 

measure was collected while the worker was in Group 2. Group is used here to indicate any 

type of categorization, such as by work location, work tasks, etc., and does not refer 

specifically to similar exposure groups as typically defined for epidemiology. These 

exposure measurements are cross-classified among workers and groups (Figure 1), and no 

strict hierarchy exists.

Cross-classified models have been applied in education research, and many instructional 

examples use this context, (6–8) though other examples are available in public health. (9,10) 

The models are an extension of hierarchical models, and the cross-classified data structure 

with associated variance components are modeled as random effects. Fixed effects can be 

added, depending upon the research question. In the context of occupational exposure 

assessment, regression models used to identify exposure determinants have used a 

hierarchical structure, (11–13) but need for a cross-classified structure may arise.

The objective of this paper is to describe models for cross-classified occupational exposure 

assessment data, and illustrate their application to a study of lead exposures during the 

preparation of bridge surfaces for painting. While cross-classified data involve a different 

conceptualization of random effects, in practice, the data are modeled similarly to 

hierarchical data and can be readily implemented in most statistical software. By illustrating 

modeling cross-classified data so as to obtain similar information about variance 

components and exposure determinants commonly obtained through hierarchical structures, 

we hope to improve the analysis and presentation of cross-classified occupational exposure 

data; and enhance the utilization of naturally arising non-hierarchical exposure assessment 

strategies.
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THE RANDOM EFFECT MODEL

Recall the hierarchical random effects model. Let ykij represent the logarithm of the 

exposure concentration measured for the ith worker in group k on the jth day. The three-level 

model is:

Eq. 1

where β0 is the grand mean of the logarithm of the exposure concentrations, νk is the 

deviation of the mean logarithm of the exposure concentration for group k, γki is the 

deviation of the mean logarithm of the exposure concentration for worker i in group k from 

the group mean, and εkij is the residual error representing the deviation of the logarithm of 

the jth exposure concentration from the mean for worker i in group k. The parameters νk, 

γki, and εkij are independent and normally distributed with mean zero and variances , , 

and , respectively. The subscripts G, B and W remind us that the variance components 

reflect between-group, between-worker and within-worker contributions the total variability 

in exposure concentrations, respectively. The mean of the logarithm of the exposure 

concentrations for group k is β0 + νk.

When workers are not exclusively nested within groups, the exposure data are cross-

classified. Cross-classified models can be represented using notation similar to Eq. 1, but 

this notation is ambiguous: Other notations are more explicit, such as the classification 

notation of Browne et al. (14) used herein. Let yi denote the logarithm of the ith exposure 

concentration, which is cross-classified among workers and groups. Let group(i) ∈ {1, 2, …, 

k} and worker(i) ∈ {1, 2, …, w} indicate the group and worker associated with the ith 

exposure measurement. The random effects model is:

Eq. 2

where β0 is the grand mean of the logarithm of the exposure concentrations,  and 

 are the random effects for the group and worker levels with superscript (2) 

indicating the worker level, and superscript (3) indicating the groups into which workers are 

cross-classified, and εi is the residual error for the logarithm of the ith exposure 

measurement. The superscripts are not strictly necessary, but are a notational convention to 

indicate the levels of grouping. The random effects  and  are independent 

and normally distributed with mean zero and variance σ2
G and σ2

B and εi is independent 

and normally distributed with mean zero and variance σ2
W. The mean of the logarithm of 

the exposure concentrations for group k is β0 + .
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ROLE OF FIXED EFFECTS

It is common in hierarchical analysis of occupational exposure data to use a two-level 

random effect structure, and incorporate the group variable as a fixed effect to represent the 

mean of the logarithm of the exposure concentrations for each group, instead of as a random 

effect. (13) This approach would transform Eq. 1 into

Eq 3

where βk is the mean of the logarithm of the exposure concentration for group k, and is a 

fixed effect. This formulation allows for statistical testing of differences in the exposure 

concentrations among groups, but this may not always be the analysis objective. A three-

level random effects structure, such as in Eq. 1 or 2, is appropriate for exploration of 

exposure determinants common to multiple groups. A model containing n fixed effects with 

three-levels of random effects with cross classified data is

Eq. 4

where βj is the regression coefficient for the fixed predictor variable xi,i, where j ={1, 2,…, 

n}.

IMPLEMENTATION

Implementation of cross-classified random-effects models is straightforward in most 

statistical software. The Center for Multilevel modeling has examples in Stata and 

MLwiN. (8) In the R Project for Statistical Computing, cross-classified data are readily 

handled in the lme4 package version 1.1–8. (15) The lme4 random effects covariance 

structure used is an identity matrix multiplied by the residual variance, with off-diagonal 

entries multiplied by an additional random-effect specific coefficient, θ. In R, the nlme 
package has more flexibility for random effect covariance structures, but does not readily 

implement cross-classified random effects models. In SAS, dummy variables must be added 

to the data to represent the cross-classified random effects with the MIXED procedure, (16) 

which was previously the case in R. (6)

The analysis in this study was implemented using the lmer function in the lme4 package as 

follows: lmer(y ~ x1 + x2 + (1|group) + (1|worker), data = named.data, REML = TRUE), 

where named.data is a data frame containing variables x1 (a fixed effect), x2 (a fixed effect), 

y (the outcome of interest), group (indicating the group for each measurement), and worker 

(indicating the worker for each measurement). The group and worker variables can be 

factors or numerical, and contain unique identifiers for each worker and group.
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AN EXAMPLE

The exploration of cross-classified data structures was motivated by an interest in lead 

exposures during surface preparation activities, measured at four work areas in Chicago, IL 

in 1991 and 1992. (17,18) The objectives of the analyses are to: 1) determine the magnitude 

of within- and between-worker variance, 2) determine the extent to which lead 

concentrations measured at fixed locations within the containment area explain the personal 

breathing zone (PBZ) concentration of lead, and 3) determine the effectiveness of supplied-

air blasting helmets.

With respect to objective 2, we considered lead concentrations measured at fixed locations 

may be influenced by the work activity being performed because the work activity may 

require increased proximity to the point source (e.g., the point of blasting). With respect to 

objective 3, we were interested to know if through statistical analysis we could verify the 

protection afforded by supplied-air blasting helmets. Typically, the effectiveness of 

respiratory protection is defined as the difference between the contaminant concentrations 

simultaneously measured inside and outside of the respirator while worn under normal (or 

simulated) working conditions, termed the (simulated) workplace protection factor. This 

objective, however, was prompted by exploratory analyses indicated the concentration of 

lead inside blasting helmets was higher than those estimated to be inside half-mask 

respirators (Table I), even when the lead concentrations at fixed locations within 

containment were similar and workers performed the same work activity (but had different 

job titles). Respirator use was determined by job title, not work activity.

This analysis included data from three work areas – Michigan Avenue bridge (MI-Bridge), 

Michigan Avenue viaduct (MA Viaduct), and Melrose Park bridge (MP-Bridge) – and study 

days on which lead concentrations were measured at fixed locations in containment. The 

location of work is important to understanding the exposures because each site had a unique 

containment structure and the lead content of paint differed by work area. (17)

A total of 117 PBZ exposures were measured among 25 workers at these work areas. Each 

worker was subject to 1–13 (median 4) measurements. Nine workers had PBZ exposures 

measured at both the MI-Bridge and MI-Viaduct work areas, indicating that the exposure 

measurements are cross-classified among work areas, rather than nested in a hierarchy. 

Simultaneous to the PBZ measurements, lead concentrations were measured at three fixed 

locations within containment. PBZ and fixed area measurements were collected on 37 mm 

Millipore mixed cellulose ester filters (closed-face cassette) and analyzed by an IL Video 22 

Atomic Absorption/Emission Spectrophotometer consistent with the 1990 NIOSH Manual 

of Analytical Methods. (17,18) All measurements were above the limit of detection.

Ten workers wore supplied-air blasting helmets, in which case the PBZ exposure was 

measured inside the helmet. Sixteen workers wore half-mask respirators, in which case the 

PBZ exposure was measured outside the respirator. Workers had a variety of job titles 

(blaster/sweeper, foreman, equipment operator, helper, supervisor, tool and inspector), but 

job titles were not tied closely to work activities performed: The data reflect PBZ exposures 

during abrasive blasting or power tooling activities.
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The PBZ exposure measurements are summarized in Table I, and indicate frequent 

exposures above the Permissible Exposure Limit at the time, 50 μg/m3 (29 CFR 1910.1025 

promulgated 1978). When the Assigned Protection Factor (APF) of 10 was applied to PBZ 

exposures measured outside half-mask respirators, (19) 45% of exposure measurements were 

above the exposure limit (Table I). The 22 unique lead concentrations measured at fixed 

locations are summarized in Table II.

The objectives were attained using a multiple mixed-effects regression model that predicts 

the logarithm of the ith lead concentration measured in the worker’s breathing zone, yi:

Eq. 5

where x1,i is the type of respirator worn during the ith personal exposure measurement (x1,i 

= 0 when a supplied-air respirator helmet was worn and exposure was measured inside the 

helmet, and x1,i = 1 when a half-mask elastomeric respirator was worn and exposure was 

measured outside the respirator), x2,i is the logarithm of the lead concentration measured at 

the corresponding fixed area location and x3,i is the work activity performed (x3,i = 0 when 

only abrasive blasting was performed and x3,i = 1 when abrasive blasting and other support 

activities were performed); β1 to β3 are the fixed effects associated with predictors x1 to x3. 

The random effects structure includes random intercepts for area and worker,  and 

. Though there were relatively few work areas to include a random effects term, the 

term was included because the fixed area lead concentration measurements were repeated 

measures at the work area level and associated with ≥ 1 PBZ measurement. Objective 1, 

however, involved a model containing only the intercept and random effects of Eq. 5, where 

the key parameters of interest are σ2
B and σ2

W.

Objective 1 was addressed by estimating the magnitudes of σ2
B and σ2

W with the random 

effects model (Table III). The between-worker and within-worker variance components are 

represented by standard deviations  = 0.454 (95%CI: <0.001, 0.899) and  = 1.36 

(95%CI: 1.19, 1.59), which correspond to geometric standard deviations of 1.57 and 3.90, 

respectively. The range of exposures experienced day-to-day between workers and within 

workers, BR0.95 and WR0.95 (Kromhout et al., 1993; Rappaport et al., 1993), were estimated 

span factors of 5.92 and 208, respectively. The within-worker variability was estimated to be 

high, and WR0.95 = 208 falls above the 80th percentile of values observed by Kromhout et 

al. (1) in an analysis of a large database of chemical exposures. The between-group 

variability was estimated to have standard deviation  = 0.538 (95%CI: <0.001, 1.57). Of 

the total variance in personal exposures , 79% was due to day-to-day variation 

within workers ( ). The lower limit of 95%CI for  and  approached zero (Table III), 

suggesting that the sample size is insufficient to estimate these variance components with 

precision. These variance components were retained in the model, however, to represent the 

structure of the data, including the association of fixed area lead concentrations with 

multiple personal exposure measurements. When fixed effects were added to the regression 

model (Table III), the magnitude of the between-group and between-worker variance 
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components diminished, which was expected since the variance was now conditioned on the 

fixed effects that vary primarily between groups and workers.

With respect to objective 2, the coefficient for the logarithm of the lead concentration 

measured at fixed locations was estimated to be, on average,  = 0.033 (95%CI: −0.154, 

0.233) (Table III). This means that there is not statistically significant association between 

the logarithms of the lead concentrations measured at fixed locations and in the PBZ, 

conditioned on the other model parameters.

With respect to objective 3, the difference between the logarithm of the lead concentration in 

the breathing zone outside the half-mask respirator and inside a supplied-air blasting helmet 

was estimated to be, on average,  = 0.892 (95%CI 0.261, 1.56) (Table III). This means the 

lead concentration outside a half-mask respirator was 2.4 fold higher than inside a supplied-

air blasting helmet (95%CI approximately 1.3-fold to 5-fold higher): This magnitude of 

difference persists with consideration of the intercept and other terms in the regression 

model. This effect was separate from the effect work activity,  = −0.896 (95%CI −1.70, 

−0.097): We tested and verified the interaction between work activity and respirator type 

was not statistically significant (  = −0.880 (95%CI −2.55, 0.674)). The mean 

logarithm of exposure during performance of blasting and other support activities was 40% 

(exp ) of the level during performance of only blasting activities.

The standard hierarchical model, which is miss-specified for these data, was fitted to the 

data (Table III), where the most-frequent work location was assigned as the group. Worker 1, 

for example, had four PBZ measurements at the MI-Bridge location and one PBZ 

measurement at the MI-Viaduct location and so was assigned to MI-Bridge for all five 

measurements. The hierarchical model yielded similar, if slightly smaller, estimates for 

and , and consequently a slightly larger estimate for . The interferences for the primary 

analysis objectives, were similar with both the hierarchical and cross-classified models, but 

the effect work activity was not statistically significant in the hierarchical model (  = 

−0.729 (95%CI −1.61, 0.078)).

The residuals of the cross-classified model showed no evidence of heteroscedasticity in 

plots.

DISCUSSION

The primary objective of this study was to introduce the concept of data cross-classification 

in occupational exposure assessment, illustrating that these data can be readily analyzed to 

explore exposure variability and determinants similarly to more traditional hierarchical 

modeling of data. Consequently, we reviewed the regression models for cross-classified data, 

and illustrated its application characterization of determinants of exposures to lead during 

surface preparation activities for painting. Contemporary statistical methods readily 

surmount the increased complexity in the non-hierarchical data, which may arise naturally in 

sampling campaigns designed for objectives other than characterizing similar exposure 

groups.
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The secondary objective of this study was to explore lead exposures during blasting 

activities in surface preparation for painting. A key finding in the analysis of the blasting 

data was that lead exposures measured outside half-mask respirators were 2.4-fold higher 

than lead exposures measured inside supplied-air blasting helmets, on average (97.5th 

percentile of the effect estimate on the order of 5-fold). This is an imperfect measure of 

respirator performance, but suggests that air-supplied blasting helmets may not perform as 

expected, reducing exposures by 2.4-fold, on average. Workers in this study wore CE-type 

supplied-air abrasive blasting helmets, (18) which have an APF ≥ 25, depending upon the fit 

of the hood and delivery of fresh air. (19) A respirator that achieves a protection factor of 25 

should reduce the lead concentration inside the respirator 25-fold relative to the 

concentration outside the respirator, a much greater reduction than predicted in the statistical 

model. Virji et al., (20) analyzing data very similar to these data, also observed that lead 

exposures were higher than expected when measured inside blasting helmets, but described 

instances when workers took off their blasting helmets between blasting sessions while in 

the presence of other dust-generating activities, and at the end of shift. This could explain 

some of the limited performance of the supplied air helmets, but it is important to focus on 

real-life performance of the control measures (which we estimated). Certainly, another 

explanation for this result is that workers performed different activities when wearing the 

two respirator types, resulting in different near-field exposure, but work activity was found 

to be associated with lead exposures (Table III). A strength to this result, however, was that 

in this study, workers wore air-supplied blasting helmets and half-mask respirators while 

performing the same activities (blasting or blasting with other activities like setting up, 

cleaning, moving containment and painting) in the same work areas: Respirator type was 

determined by job title, not activity or containment area. All workers who wore half-mask 

respirators had job title “blaster/sweeper”, while only air-supply blasting helmets were worn 

by foremen, equipment operators, helpers and supervisors.

The second finding was that lead concentrations measured at fixed locations were poor 

predictors of PBZ lead exposures: The confidence interval around  is wide and includes 

zero, indicating that the positive association may be due to random chance. To our 

knowledge, lead concentrations at fixed locations in containment have not been used to 

predict PBZ exposures in the context of blasting operations. Virji et al., (20) consistent with 

this study, observed lead concentrations measured at fixed locations inside containment to 

vary several orders of magnitude, but did not compare fixed location and PBZ lead 

concentrations. It makes sense that there should be some positive association between the 

lead concentration in the work area and in the PBZ, since air exchanges between these two 

locations, but the applicability of simple mass-balance models – e.g., the two-zone or well-

mixed models, (17,21) to this scenario is unclear owing to the presence and movement of 

multiple workers, each of who creates a source of lead, and potential non-linearity of the 

relationship.

The lead content of the paint and thickness of paint should be associated with the lead 

concentration in the work area during blasting operation as these factors affect total lead 

emission. (17) While Booher(22) found relatively poor correlation between the lead content of 

paint and lead concentrations in air during sanding (Person’s ρ = −0.27) and chipping 

Jones and Burstyn Page 8

J Occup Environ Hyg. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Pearson’s ρ = 0.44) during ship overhaul, Zedd et al. (23) reported a stronger correlation, 

with Spearman’s ρ between 0.4 and 0.6, depending on work activity. This and other 

location-specific factors like containment ventilation and efficiency were not specifically 

explored in this work because of limited number and variability in location-specific data, but 

these analyses would be possible if more locations were studied. The absence of these 

factors in the models may have left some residual confounding in our estimates.

Cross-classified data represent a first step beyond strictly hierarchical structures for 

occupational exposure data, but another related data structure involves membership in 

multiple groups. (14) That is, the exposure measurement was collected while the worker was 

a member in multiple groups. An example of multiple membership data in this work is the 

PBZ exposures measured for three workers who moved around at Michigan Avenue work 

areas, and spent time in both the MI-Bridge and MI-Viaduct work areas during a single 

exposure measurement. Multiple-membership can occur when exposure assessment 

strategies are tasked-based, but may be more common in the context of long-term exposure 

assessment campaigns, or when detailed observations about tasks performed during a full-

shift are made but the exposure is integrated through shift-duration sampling. For example, 

radiation dosimeters are worn for months at a time, and workers may change job activities or 

job titles during the monitoring period resulting in membership of multiple similar exposure 

groups or work area; and biological markers of chronic exposure may similarly reflect 

occupational exposures occurring in multiple groups and/or environmental exposures 

occurring in multiple microenvironments.

CONCLUSIONS

In this example, we found that the incorrectly specified hierarchical model, which required 

re-classification of work areas for some workers on some days, yielded similar inferences to 

the cross-classified model, but underestimated the between-worker and between-group 

variance and the estimates of fixed effects, representing determinants of exposure, were 

estimated less precisely. The cross-classified model, however, correctly represents the 

variance structure of the exposure assessment strategy. Through this demonstration, we hope 

hygienists and exposure assessors will consider non-hierarchical models in the design and 

analysis of exposure assessments.
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Figure 1. 
Cross-classified exposure data for an individual worker for whom four exposure 

measurements were collected while the worker was in one of two groups.
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Table II

Lead concentrations (μg/m3) measured at fixed locations in the containment structures.

Sample Lead Exposure

Location Size Mean GM GSD

MI-Bridge 11 11,089 5,644 4.58

MI-Viaduct 8 6,268 3,582 3.32

MP-Bridge 3 15,554 14,224 1.70

All 22 9,942 5,427 3.84
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